Last time: "Subsequences" $(x_n)_{n \in \mathbb{N}} = (x_1, x_2, x_3, x_4, x_5, x_6, x_3, x_8, ..., x_n, ...)$ Let Take natural no. nikn2 < n3 < n4<ns<n6 <... Strictly increasing ang subseq: $(\chi_{n_k})_{k \in \mathbb{N}} = (\chi_{n_k}, \chi_{n_k}, \chi_{n_k}, \ldots, \chi_{n_k}, \ldots)$ Thm: $(x_n) \rightarrow x \implies ANY$ subseq. $(x_{n_k}) \rightarrow x$ Thm: " (In) does NOT converge to x" $\langle z \rangle$ = $\sum_{k=0}^{n}$ 20 and a subseq (x_{n_k}) s.t. $X_{h_k} - x \mid 3 \xi_0 \quad \forall k \in \mathbb{N}.$ $\frac{Recall: "MCT": (x_n) odd k monotone \Rightarrow (x_n) convergent}$ $ES.$) $(x_n) = ((-1)^n)$ bdd, but NOT monstone, NOT convergent. $Q:$ What if (x_n) is ONLY bold? "Compactuess" Bolzano-Weierstrass Thm: "BWT" (МАТН 3070). (x_n) bdd => \exists subseq. (x_{n_k}) which is convergent. 2 But not unique! Example: (Xn) = ((-1)°) has a convergent subseq.

$$
hamely (x_{2k}) = (1.1.1.1...) \rightarrow 1
$$

Answer above $(x_{2k-1}) = (-1,-1,-1,-1,...) \rightarrow -1$

Proof We will prove it using Nested Internal Property NIP Recall I ^Z Iz ² Is ² nested closed d bold E ^a ol IT YE Goal Construct In inductively satisfying thehypothesis above Given ^a bold seq Xu by def ⁷ ^M so ^s ^t 13calE ^M theN ⁱ ^e th EN kn E M M I Cai b N'lymans kn ^M IL ^L ^L t ^t ^m a o o o e e ay Ib ⁷ ^B Ar Iz bz Do method of bisection ^A ^t ^b ^l Consider the midpoint ² then Case1 a a't contains infinitelymany terms of Gcn a tb choose Iz ^a ² Caz.bz Case2 Otherwise choose Iz ^a zb ^b az.bz Aztbe Repeat the process take ^a midpt ² choose I3 as.bz Inductively we obtain ^a seqof internals I Z Iz ^Z Iz ^Z Ice ² nested closed bad St each In contains infinitelymany terms of Gcn

• Length (In) =
$$
\frac{2M}{2^{n-1}}
$$
 \rightarrow 0 as n \rightarrow 0

By "NIP",
$$
\overrightarrow{n_1}
$$
 In = {3}
\nChain: 3 subseq. (Xine) \rightarrow 3
\n \overrightarrow{Pr} : Take any Xn, 6 I₁, then since I₂ controls
\ninflottedy many terms of (Xin)
\n \rightarrow use can choose $Pr_2 > n_1$ set Xn₁ 6 I₂
\n \rightarrow keep on daily this, we obtain in, $\overrightarrow{Pr_1}$ or $\overrightarrow{Pr_2}$ cm. 37
\n \overrightarrow{X} for E₁ in \overrightarrow{X} 4 K e N.
\n16.
\nNow, $\overrightarrow{n_1}$ In = {3} $\overrightarrow{3}$ \rightarrow \overrightarrow{L} in \overrightarrow{X} = 3
\nBy Square Tim, we have \overrightarrow{L} in $(X_{10}) = 3$
\n \overrightarrow{P}
\nAs an application of \overrightarrow{B} iff, we prove:
\n \overrightarrow{P}
\n \overrightarrow{P} Let (X_{11}) be a bdd sequence.
\n $(X_{11}) \rightarrow X$ \Leftrightarrow $\sqrt{2}$ ANY convergent subseq. (X_{111}) has \overrightarrow{L} in $(X_{111}) = X$
\n \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P}
\n \Leftrightarrow \overrightarrow{R} \overrightarrow{P}
\n \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P}

Subsequential limits. Limsup & liminf $Q:$ Given a bold seq. (x_n) , what is $L := \left\{ \begin{array}{c} L \in \mathbb{R} \mid \exists \text{ subseq.} (x_{n_k}) \text{ of } (x_n) \text{ st } \lim_{k \to \infty} (x_{n_k}) = k \end{array} \right\} \right\}$ Example: If lim $(x_n) = x$, then $x_n = \{x\}$. Example: $(X_{11}) = ((-1)^n)$. then $L = \{1, -1\}$ Remark: $BWT \Rightarrow \& + \phi$. (X_n) bdd => $\exists M$ >0 st $|X_n| \le M$ Vne N. So, any convergent subseq. (Xnx) satisfy $-M \leqslant X_{N_{k}} \leqslant M$ then $as k \rightarrow \infty$ $-M \leq \ell \leq M$ $P*^{BM}$ $ie^{p}f$ \mathcal{L} \subseteq $[-M, M]$ is bold subset of R . By completeness of R. infL. sup L both exist. $Def²$: Limsup (x_n) = lim (x_n) := sup L $liminf$ $(x_n) = lim(x_n) := inf L$ Thm: Let (xn) be a bold seq. Define another seq. (Um) by $Um := sup \{x_n | n > m\}$ for each m=1.2.3... THEN. (Um) is a decreasing seq. with $\lim_{m \to \infty} (u_m) = \inf \{ u_m \mid m \in \mathbb{N} \} = \lim_{m \to \infty} (x_m)$

Proof: $[Recall: S_1 \n\t\subseteq S_2 \implies sup S_1 \le sup S_2]$

$$
(x_n) = (x_1, x_2, x_3, x_4, x_5, ..., x_n, ...)
$$

sup = u_1 sup = u_2

- Yme N. { Xn | n3 m } 2 { Xn | n3 m + 1 }
- take sup. u_m \qquad \qquad u_{m+1}
- So, (Um) is decreasing, and bdd (: (In) bdd)
- By MCT, lim $(u_m) = inf\{u_m : m \in N\}$.
- $Claim 1:$ $lim (x_n) \leq lim (Um)$
- $H: Recall$ $\lim_{x \to 0} (x_n) = sup L$. Let $l \in L$. then by def? \exists subseq. (Int) \rightarrow 2. By def? of Um (when $m = n_k$)
	- X_{n_k} \leq $\mathcal{U}_{n_k} =$ $sup \{ X_n \mid n \cdot n_k \}$ $\forall k \in \mathbb{N}$
- $L \leq \lim_{k \to \infty} (u_{n_k}) = \lim_{m \to \infty} (u_m)$
 (u_{n_k}) is a subseq of let $k \rightarrow \infty$. the convergent seq. (Um). C laim 2: $\lim_{m \to \infty} (x_m) \geq 1$ im (u_m)
- If : Want to Show: lim (Um) Ed

We have to find a subrep
$$
(X_{11k})
$$
 of (X_{11}) st
 $(X_{11k}) \rightarrow lim (X_{111})$

. Choose $n_1 \ge 1$ st. $y_1 - 1 < x_{n_1} < 1$:= sup $\{x_n | n \ge 1\}$. Choose $n_2 > n_1$ or $\frac{1}{n_1}$ $\frac{1}{2}$ < χ_{n_2} \leq $\frac{1}{n_1+1}$ = sup $\frac{1}{2}$ χ_{n_1} | n = n, +3 Do it inductively, we can choose n, che ch3 6

$$
st \qquad \mathcal{U}_{n_{k}+1} - \frac{1}{k+1} < \mathcal{X}_{n_{k+1}} \leq \mathcal{U}_{n_{k}+1} \qquad \forall k \in \mathbb{N}
$$

Take
$$
k \rightarrow \infty
$$
 above, by $S_{\text{queue}} \tau_{\text{hm}}$.
 $l = \lim (x_{n_k}) = \lim (u_m) \in \mathcal{L}$

Remarks

- (i) $\overline{\lim}(x_n)$, $\underline{\lim}(x_n) \in \mathcal{L}$
- lim (an), lim (an) always exist [BUT not lim (an)] (ii) provided that (In) is bdd.
- (iii) $\overline{\ell}_{im}$ $(x_n + y_n) \leq \overline{\ell}_{im} (x_n) + \overline{\ell}_{im} (y_n)$ \overline{Pf} : Exercise! (c.f. Limit this)

Midtern UP TO HERE! -